Open access copy available
Carbon Costs and Bushmeat Benefits of Hunting in Tropical ForestsBackgroundOverhunting in tropical forests depletes frugivorous animals that play a vital role in seed dispersal. This loss alters tree species composition and reduces forest carbon storage. While bushmeat hunting remains an important source of protein and income for local communities, its long-term impact on carbon stocks remains poorly understood. This study investigates the trade-offs between the economic benefits of bushmeat hunting and the potential carbon costs of defaunation-driven biomass loss. Understanding these dynamics is essential for integrating hunting management into climate mitigation strategies such as REDD+. Open access copy available |
Livestock production and the global environment: Consume less or produce better?BackgroundGlobal demand for livestock products rises rapidly, especially in developing countries. Although livestock production contributes significantly to greenhouse gas (GHG) emissions, land use change, and nitrogen cycle disruptions, producers can reduce its environmental impact by improving production efficiency. This study evaluates whether shifting to more efficient livestock systems offers a viable path to mitigate these impacts, rather than relying solely on consumption reduction. Open access copy available |
Wild Meat Consumption in Tropical Forests Spares a Significant Carbon Footprint from the Livestock Production SectorBackgroundTropical forest communities widely consume wild meat, which provides essential protein and micronutrients. While most discussions around hunting emphasize its ecological impacts—such as defaunation and biodiversity loss—this study shifts focus to its potential climate benefits. It investigates the greenhouse gas (GHG) emissions avoided when people consume wild meat instead of livestock products, especially bovine beef, a major driver of deforestation and emissions. By quantifying the carbon footprint of substitution, the study explores how sustainable hunting could contribute to climate change mitigation. Open access copy available |
Not Seeing the Forest for the Trees: The Oversight of Defaunation in REDD+ and Global Forest GovernanceBackgroundREDD+ (Reducing Emissions from Deforestation and Forest Degradation) aims to mitigate climate change by preserving forest carbon stocks. Although REDD+ focuses mainly on reducing deforestation, it largely ignores defaunation—the loss of forest wildlife caused by unsustainable hunting. Many tropical forests suffer from "empty forest syndrome," where hunting removes large frugivores and seed dispersers, disrupting seed dispersal and carbon sequestration. This study highlights how REDD+ policies overlook the ecological role of forest fauna and argues that neglecting defaunation threatens the long-term success of forest conservation. Open access copy available |
Roles of indigenous women in forest conservation: A comparative analysis of two indigenous communities in the PhilippinesBackgroundThis study examines the roles of indigenous women in forest conservation in Nueva Ecija, Philippines: the Ikalahan-Kalanguya of Caraballo Mountain in Carranglan and the Dumagat women of Mount Mingan in Gabaldon. These communities contain the highest number of indigenous people living in or near the forest in the province and have retained indigenous forest preservation practices. Historically, people have considered indigenous peoples in the Philippines, including women, protectors of the environment. However, specific studies focusing on the direct contributions of indigenous women to forest protection are lacking. Open access copy available |
Synergistic Effects of Seed Disperser and Predator Loss on Recruitment Success and Long-Term Consequences for Carbon Stocks in Tropical RainforestsBackgroundDefaunation—the loss of animal species due to hunting, habitat destruction, and other human activities—affects tropical forests profoundly. Large frugivores play a key role in seed dispersal, while seed predators influence recruitment success and plant population dynamics. Previous studies focus mainly on how defaunation impacts seed dispersal but often overlook the role of seed predators and potential compensatory ecosystem effects. This study examines how losing both seed dispersers and seed predators simultaneously affects tree recruitment and long-term carbon storage in tropical forests. Open access copy available |
The Need for Carbon Finance Schemes to Tackle Overexploitation of Tropical Forest WildlifeBackgroundOpen access copy available |
Contrasting Effects of Defaunation on Aboveground Carbon Storage Across the Global TropicsBackgroundOpen access copy available |
Fungi and Insects Compensate for Lost Vertebrate Seed Predation in an Experimentally Defaunated Tropical ForestBackgroundDefaunation disrupts key plant-animal interactions such as seed dispersal and seed predation, triggering cascading effects on plant regeneration, species composition, and carbon storage. While past studies emphasize the negative consequences of losing vertebrate seed dispersers and predators, it remains unclear whether other organisms like fungi and insects can compensate for these losses. This study investigates whether non-vertebrate predators offset the decline of large vertebrate seed predators in a tropical rainforest. Open access copy available |
Size-Related Differential Seed Predation in a Heavily Defaunated Neotropical Rain ForestBackgroundDefaunation, driven by hunting and habitat loss, disproportionately affects medium and large mammals, often leaving behind a residual community dominated by small rodents. This shift in mammal communities can alter seed predation dynamics and impact forest regeneration. In heavily defaunated areas like Los Tuxtlas, Mexico, small rodents have become the primary seed predators. This study investigates whether seed predation patterns differ based on seed size in a highly defaunated forest. Specifically, it examines whether small rodents preferentially consume small seeds while large-seeded species escape predation, potentially influencing seed germination and plant recruitment. Open access copy available |