Latin America and Caribbean

The carbon sink of secondary and degraded humid tropical forests

Background:

The Forest and Land use Declaration from the 26th Climate Change Conference of the Parties underscores the crucial role of tropical moist forests  as a nature-based solution to address climate and ecological emergencies. However, the Amazon, Borneo, and Central Africa forests experience ongoing forest cover losses due to various anthropogenic drivers. This has led to a mosaic of recovering forests at different stages post-disturbance, with limited understanding of their impact on forest carbon dynamics. 

Available with subscription or purchase

Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change

Background:

With the Brazilian Amazon being a region of global significance for its carbon storage potential, there is a growing need to understand the dynamics of secondary forest regrowth and its implications for carbon sequestration. Previous studies have laid the groundwork for understanding the broad-scale patterns of secondary forest regrowth, but there is a need for a more detailed and spatially explicit analysis that considers both environmental and anthropogenic drivers of regrowth. The urgency to address this knowledge gap is further underscored by the commitment to national and international climate targets.

Open access copy available

Maximizing biodiversity conservation and carbon stocking inrestored tropical forests

Background:

Ecological restoration plays a critical role in fragmented mega-diverse regions, particularly for endangered species with low dispersal rates. Species with impoverished populations, limited dispersal capacity, and important functionsas food resources for animals should be prioritized for active reintroduction in order to increase the conservation value ofrestored forests. However, seedlings from these species are often hard to find or too costly to include in many restoration projects.

Open access copy available

Co-benefits in biodiversity conservation and carbon stock during forest regeneration in a preserved tropical landscape

Background:

Recognizing the connection between carbon stock and biodiversity has become more crucial in light of the requirements set by international agreements. Consequently, a vital and indispensable measure for guiding relevant global environmental initiatives is to empirically investigating the potential advantages of restoring degraded areas through forest regeneration. This approach aims to boost both aboveground carbon stock and biodiversity, moving them closer to their natural levels.

Available with subscription or purchase

Carbon sequestration and nutrient cycling in agroforestry systems on degraded soils of Eastern Amazon, Brazil

Background:

Among various approaches to forest restoration, passive restoration via natural regeneration stands out as the most cost-efective option. However, the resilience of the forest is heavily influenced by factors such as water availability, soil integrity, and the presence of seed dispersers in the landscape. In situations where resilience is low, successful restoration relies on active human interventions. Unfortunately, many restoration projects, especially those involving smallholders, face budget constraints. In such circumstances, Agroforestry Systems emerge as a restoration strategy that combines both socio-economic and ecological advantages.

Available with subscription or purchase

Restoring soil carbon and chemical properties through silvopastoral adoption in the Colombian Amazon region

Background:

The traditional livestock production in this region causes the loss of forest areas each year, leading to soil degradation and loss of biodiversity. Silvopastoral systems have become an attractive alternative with positive effects for the environment, society, and the regional economy. The study was conducted in two counties in the northwestern Colombian Amazon, which are representative of the hilly landscape typical for Silvopastoral systems implementation. 

Available with subscription or purchase

Carbon loss and removal due to forest disturbance and regeneration in the Amazon

Background:

Deforestation and forest degradation urges scientists to understand the dynamics of carbon loss and removal in the Amazon, particularly due to significant role of the Amazon rainforest in the global carbon cycle and the potential implications for climate change. By addressing this topic, the study aims to enhance our understanding of the Amazon's role in the global carbon cycle, provide insights into the spatial and temporal patterns of carbon loss and removal, and contribute valuable information for informing climate change mitigation strategies and tropical forest conservation efforts.

Available with subscription or purchase

Discolouring the Amazon Rainforest: how deforestation is affecting butterfly coloration

Background

Butterflies are among the most colorful organisms in the world, and color plays a central role in many of their life-history strategies. However, sudden environmental changes, including anthropogenic disturbances such as habitat loss and fragmentation, could affect the efficacy of coloration strategies in these and other animals. Therefore, this study aims to investigate how deforestation is affecting butterfly coloration in the Amazon Rainforest and to provide insights into the potential consequences of anthropogenic disturbances on these beautiful creatures.

Available with subscription or purchase

Direct seeded and colonizing species guarantee successful early restoration of South Amazon forests

Background

South Amazon forests have been highly deforested, including the legally protected riparian forests. Direct seeding is a low cost method, easy-to-implement at large scale. The authors emphasize the imperative to reduce the costs and enhance the outcomes of restoration efforts, which have become mainstream solutions in countering biodiversity loss and climate change around the world.

Available with subscription or purchase

Evaluating the success of direct seeding for tropical forest restoration over ten years

Background

The main causes of deforestation in the Amazon are large-scale agriculture and cattle ranching, which have led to the loss of millions of hectares of forest. To address this issue, different mechanisms have been implemented since 2005 to reduce deforestation and increase forest restoration.  However, highly modified, degraded areas with a long history of use may take a long time to regenerate naturally or may not recover into a secondary forest. Therefore, active restoration methods are needed to accomplish this massive obligation.

Available with subscription or purchase
Subscribe to Latin America and Caribbean