Modeling, Goalsetting, and Frameworks
Current trends and future directions for integrating social values into mangrove restorationBackgroundDifferent communication styles, governance, and social issues create barriers to successful mangrove forest restoration projects, and may hinder the ability to scale up projects to meet global restoration goals. Incorporating social values and stakeholder preferences into restoration projects can help identify best management practices, promote successful outcomes, and prevent distrust and inequality between restoration practitioners and stakeholders with different needs and perceptions of mangrove forests. Open access copy available |
Bridging conservation and policy: evaluating national targets to reduce mangrove loss under the Kunming–Montreal biodiversity frameworkBackgroundThis research examines the alignment between the Kunming–Montreal Global Biodiversity Framework (GBF) targets and national efforts to halt mangrove loss. Under the Convention on Biological Diversity, GBF’s Targets 1 and 3 aim to reduce habitat loss and expand protected areas to conserve 30% of critical ecosystems by 2030. Mangroves, vital for biodiversity, carbon storage, and coastal protection, continue to experience degradation due to both human and natural drivers. Despite partial success in global mangrove protection, national policies often fail to address underlying drivers of degradation or incorporate specific, measurable conservation actions. Open access copy available |
The enduring world forest carbon sinkBackgroundForests are critical to mitigating climate change because they absorb atmospheric carbon dioxide (CO₂) and store it in biomass and soils. In 2023, atmospheric CO₂ levels exceeded 420 ppm, intensifying the urgency to understand terrestrial carbon sinks. Forests historically lost 180 Pg of carbon through land-use change, yet they remain central to achieving global net-zero goals by 2050. While remote sensing and modeling offer insights, this study emphasizes long-term, ground-based forest inventory data as the most reliable source for assessing trends in carbon sinks across boreal, temperate, and tropical forest biomes. Open access copy available |
The weak land carbon sink hypothesisBackgroundOpen access copy available |
Warming induces unexpectedly high soil respiration in a wet tropical forestBackgroundTropical forests play a key role in regulating the global carbon cycle, exchanging more carbon dioxide with the atmosphere than any other terrestrial biome. However, limited in situ experiments constrain understanding of their response to climate warming. Understanding these responses is crucial, as even small changes in soil respiration in tropical regions can substantially influence global carbon dynamics and climate feedbacks. Open access copy available |
The changing global carbon cycle: linking plant–soil carbon dynamics to global consequencesBackgroundOpen access copy available |
Addressing critiques refines global estimates of reforestation potential for climate change mitigationBackgroundOpen access copy available |
Seed Production and 22 Years of Climatic Changes in an Everwet Neotropical ForestBACKGROUND:Yasuní National Park in western Amazonia hosts one of the world’s most biodiverse and everwet tropical forests, with minimal seasonal variation in rainfall and temperature. Its stable climate and relative insulation from large-scale disturbances such as ENSO make it an ideal site to investigate long-term ecological responses to climate change. The forest’s biological richness and global conservation importance underscore the need to understand how shifting climatic conditions influence seed production and, by extension, forest regeneration and community dynamics. Available with subscription or purchase |
How to Achieve Effective Participation of Communities in the Monitoring of REDD+ Projects: A Case Study in the Democratic Republic of Congo (DRC)BACKGROUND:The Miombo woodlands of southern Africa represent one of the region's most extensive dry forest ecosystems, spanning several countries and supporting the livelihoods of over 100 million people. These woodlands have undergone significant environmental degradation over recent decades, primarily driven by shifting cultivation, charcoal production, and unsustainable land-use practices. Given their ecological importance and critical role in rural livelihoods, particularly among low-income people, understanding and promoting sustainable management of Miombo woodlands is essential for both environmental conservation and socioeconomic development. Open access copy available |
Comparing Inductive and Deductive Modeling of Land Use Decisions: Principles, a Model and an Illustration from the PhilippinesBackgroundOpen access copy available |

