Forest Dynamics

Decreasing landscape carbon storage in western US forests with 2 °C of warming

Background

This study investigates how a 2°C increase in global mean temperature above pre-industrial levels could alter above-ground carbon storage in forests across the western United States, a region already experiencing climate-driven tree mortality, reduced regeneration, and more frequent fire and insect outbreaks. Forest carbon density is treated as a “carbon carrying capacity” controlled by climate and disturbance regimes, and there is concern that warming and drying will shift many areas towards lower carbon forest or non-forest states, with implications for climate mitigation and carbon offset projects.

Open access copy available

Don’t judge species on their origins

Background

This commentary suggests that the long-standing “native versus non-native species” debate has created a widespread bias in conservation as it encourages the idea that introduced species are inherently harmful, despite limited quantitative evidence supporting broad claims of catastrophic biodiversity loss. As global changes (such as climate change, nitrogen eutrophication, increased urbanization, and other land-use changes) cause ecosystems to be unable to restore to their historical states, categorizing species based on their origin increasingly mismatches ecological reality, influencing policy, funding, and management priorities.

Open access copy available

Elevation, aspect, and climate shape blue pine (Pinus wallichiana) biomass and carbon dynamics in the Bhutanese Himalayas

Background

Forests cover over two-thirds of Bhutan and are constitutionally protected, enabling national carbon neutrality. Yet, climate change, increasing temperatures, variable precipitation, and heightened wildfire risk threaten carbon storage capacity and species distributions. Blue pine is a fast-growing, socio-economically important species dominating inner dry valleys between roughly 2200–3000 m, making it an ideal model to understand how elevation and slope aspect regulate biomass accumulation and carbon sequestration under changing climate conditions.

Open access copy available

Resilience to Hurricanes is High in Mangrove Blue Carbon Forests

Background

While many anthropogenic forces threaten the survival of mangrove forests, tropical storms are the most significant non-anthropogenic sources of disturbance. Since mangroves are important carbon sinks, it is important to understand the impacts of tropical storms on mangrove forest structure, function, and carbon stock recovery.

Open access copy available

Bridging conservation and policy: evaluating national targets to reduce mangrove loss under the Kunming–Montreal biodiversity framework

Background

This research examines the alignment between the Kunming–Montreal Global Biodiversity Framework (GBF) targets and national efforts to halt mangrove loss. Under the Convention on Biological Diversity, GBF’s Targets 1 and 3 aim to reduce habitat loss and expand protected areas to conserve 30% of critical ecosystems by 2030. Mangroves, vital for biodiversity, carbon storage, and coastal protection, continue to experience degradation due to both human and natural drivers. Despite partial success in global mangrove protection, national policies often fail to address underlying drivers of degradation or incorporate specific, measurable conservation actions.

Open access copy available

The enduring world forest carbon sink

Background

Forests are critical to mitigating climate change because they absorb atmospheric carbon dioxide (CO₂) and store it in biomass and soils.  In 2023, atmospheric CO₂ levels exceeded 420 ppm, intensifying the urgency to understand terrestrial carbon sinks. Forests historically lost 180 Pg of carbon through land-use change, yet they remain central to achieving global net-zero goals by 2050. While remote sensing and modeling offer insights, this study emphasizes long-term, ground-based forest inventory data as the most reliable source for assessing trends in carbon sinks across boreal, temperate, and tropical forest biomes.

Open access copy available

Warming induces unexpectedly high soil respiration in a wet tropical forest

Background

Tropical forests play a key role in regulating the global carbon cycle, exchanging more carbon dioxide with the atmosphere than any other terrestrial biome.  However, limited in situ experiments constrain understanding of their response to climate warming. Understanding these responses is crucial, as even small changes in soil respiration in tropical regions can substantially influence global carbon dynamics and climate feedbacks.

Open access copy available

Land availability and policy commitments limit global climate mitigation from forestation

Background

Open access copy available

The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences

Background

Open access copy available

Addressing critiques refines global estimates of reforestation potential for climate change mitigation

Background

Open access copy available
Subscribe to Forest Dynamics